Predictive Modeling of Anatomy with Genetic and Clinical Data
نویسندگان
چکیده
We present a semi-parametric generative model for predicting anatomy of a patient in subsequent scans following a single baseline image. Such predictive modeling promises to facilitate novel analyses in both voxel-level studies and longitudinal biomarker evaluation. We capture anatomical change through a combination of population-wide regression and a non-parametric model of the subject's health based on individual genetic and clinical indicators. In contrast to classical correlation and longitudinal analysis, we focus on predicting new observations from a single subject observation. We demonstrate prediction of follow-up anatomical scans in the ADNI cohort, and illustrate a novel analysis approach that compares a patient's scans to the predicted subject-specific healthy anatomical trajectory.
منابع مشابه
Comparison of Ordinal Response Modeling Methods like Decision Trees, Ordinal Forest and L1 Penalized Continuation Ratio Regression in High Dimensional Data
Background: Response variables in most medical and health-related research have an ordinal nature. Conventional modeling methods assume predictor variables to be independent, and consider a large number of samples (n) compared to the number of covariates (p). Therefore, it is not possible to use conventional models for high dimensional genetic data in which p > n. The present study compared th...
متن کاملTernary Phase Diagram Modeling of Chiral Medetomidine Salts Using NRTL-SAC Model
Experimental determination of solubility and ternary phase diagram of chiral compound are of tedious and time consuming tasks, and in many cases, there is not enough experimental data for different enantiomeric compositions to access the experimental ternary phase diagram. Using thermodynamic models with predictive capability, having less dependency on experimental data, affords a great advanta...
متن کاملAn Efficient Predictive Model for Probability of Genetic Diseases Transmission Using a Combined Model
In this article, a new combined approach of a decision tree and clustering is presented to predict the transmission of genetic diseases. In this article, the performance of these algorithms is compared for more accurate prediction of disease transmission under the same condition and based on a series of measures like the positive predictive value, negative predictive value, accuracy, sensitivit...
متن کاملYarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms
Yarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is col...
متن کاملModeling of Artemisia sieberi Besser Habitat Distribution Using Maximum Entropy Method in Desert Rangelands
Predictive modeling of habitat distribution of range plant species and identification of their potential habitats play important roles in the restoration of disturbed rangelands. This study aimed to predict the geographical distribution of Artemisia sieberi and find the influential variables in the distribution of A. sieberi in the desert rangelands of central Iran. Maps of environmental variab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 9351 شماره
صفحات -
تاریخ انتشار 2015